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-1 Abstract. We have investigated the role of plasma instabilities in the origin of a solar flare. 1‘ Three types of stability problems are discussed: the magnetohydrodynamic instability of an 

infinitely conducting fluid, the instability due to the magnetic field gradients, and the finite 
conductivity instability. These instabilities are examined m a situation that occurs when two 
plabmas trapped in a pair of sunspot magnetic fields approach each other. The assumption of 
infinite conductivity gives rise to stable situations. The instability growth time in the magnetic 
field gradients that exist near sunspots is extremely large. The growth time for finite conduc- 
tivity instability is of the order of a few seconds or minutes, and we therefore believe that the 
flare can be produced by finite conductivity instabilities in the solar atmosphere above a 
group of sunspots. Our analysis does not help explain the acceleration of charged particles to 
high energies; for this, the problem of acceleration must be conaidered separateiy. 

A c/WOd 

1. INTRODUCTION currents are generated by the magnetic field 
gradients. Severny arrives a t  the conclusion that  

It has been suggested [Parker, 1962; Dungey, the plasma being compressed by the two sun- 
1961; Gold and Hoyle, 19601 that instabilities spot fields is unstable when the magnetic pres- 
may play an important role in explaining the sure is greater than the kinetic pressure of the 
origin of solar flares. Dungey [196l] has sug- plasma. The result is that if a compression be- 
gested that a pinch instability can take place in gins it will proceed a t  an ever-increasing rate; 
the ionized solar atmosphere near the neutral i.e., the pinch effect takes place. The phenomena 
point of the sunspot magnetic fields and also that take place in the chromospheric or coronal 
that runaway electrons may develop in the plasma near the sunspot region are quite dif- 
transition region, leading to  a two-stream in- ferent from the pinch effect produced in the 
stability. The possibility of the pinch instability laboratory. Figure 1 shows an equilibrium con- 
is based on the assumption that a current may figuration of the pinched plasma produced in 
be driven along the neutral point (or line) be- the laboratory. Figure 2 shows one of the pos- 
tween two regions of oppositely directed mag- sible equilibrium configurations that can arise 
netic fields to such an intensity that the self- in the solar plasma before the occurrence of a 
magnetic field of the current overpowers all flare; this case is considered in detail in section 
other forces. Although this may be a possibility, 2. The basic difference between the two cases is 
our analysis in section 2 shows that such an in- that, whereas in the first the magnetic field out- 
stability does not arise in the equilibriums con- side the plasma is a decreasing function of the 
sidered here. Gold and Hoyle [1960] consider a distance, in the second it is uniform. We shall 
particular geometry of a complex sunspot group show in section 2 that the equilibrium codgura- 
(in relation to the problem of origin of flares) tion considered in Figure 2 is stable. The phys- 
in which a pair of bipolar sunspots is parallel to ical reason for the instability of the configura- 
another pair of bipolar sunspots. We shall con- tion in Figure 1 is that any plasma moving away 
sider here the simpler geometry of four sunspots 
each of which belongs to a pair of conjugate 
spots arranged in a straight line. This geometry 
is considered following Sweet [1958]. 

Severny [1958, 19591 and Severny and Shab- 
hanski [1961] have worked out a model of the 
pinch effect in the neighborhood of the neutral 
point of the sunspot fields assuming that strong 

from the axis of the cylinder is at  a point at 
which the magnetic field, and therefore the mag- 
netic force, is less, and the perturbation con- 
tinues to  grow. Similarly, if any part of the 
plasma moves toward the axis of the cylinder it 
is further pushed by the magnetic field due to  
the increased magnetic force outside the p l a s m  
cylinder. If we nom consider the equilibrium 
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Fig. 1. Pinched plasminn IJI'OduCC!d in the luhora- 
tory. 

configuration of Figure 2 we a t  once see thnt 
any displacemeiit of the plasma in or out of its 
region is in the presence of the same m:ignetic 
force and there is no cause of instability :IS in 
laboratory pinches. The same holds for the 
equilibrium configuratioii sketched in Figure 3. 

I n  sections 3 and 4 TTe shall analyze some of 
the known instabilities that apply in the present 
situation, with the understanding that an in- 
stability with growth rates of the right order 
constitutes the flare phenomena, as an insta- 

Y 4 
Bo (Magnetic field 

oppositely directed) 

Fig. 2.  A possible equilibrium configuration bc- 
fore the onset of flare. The magnetic field on botll 
sides of a zero field region is oppositely directed. 
Outside is assumed vacuum. The plasma, the cur- 
rent sheath, and the magnetic field extend both 
ways, perpendicular to the plane of the paper, up 
to infinity. The current in the sheath flows in the 
Y direction. 

bility helps to blow the material up. The dis- 
cussion presented here does not help in under- 
standing how the particles get accelerated to  
energies of the order of a few million electron 
volts; for this, acceleration processes must be 
considered separately. 

2 ~ I A ( T N E T O H Y D R O D Y N A M I C  STABILITY O F  

EQUILIBRIUM CONFIGURATIONS 

Obhcrvations show [ S a t e m y ,  19581 that, before 
the occurrence of a flare, the sunspots are 
approaching each other with the velocity of 
a few kilometers per second. Assuming that we 
have a group of four sunspots arranged in a 
straight line as considered by  Sweet [1958, 
Figure 31, let us suppose that a magnetohydro- 
dynamic equilibrium is reached n hen the two 
magnetic fields of the sunspot groups are sepa- 
rated by a distance 22, with a region of zero 
magnetic field and hot plasma between. For 
simplicity, we neglect the gradient of the mag- 
netic field on both sides of the zero field region. 
The possibility of such an equilibrium con- 
figuration will be increased if i t  is proved that 
the magnetic field gradients do not give rise to  
any serious instabilities. I n  section 3 we will 
show that the e folding growth time of any 
perturbation due to the magnetic field gradient 
instabilities is of the order 1010" seconds. This 
allows us to neglect any instabilities due to the 
gradients of the magnetic field. The pressure 
anisotropy instabilities do not arise in this case 

Fig. 3. Another possible hydromagnetic equilib- 
rium of oppositely directed magnetic field re- 
gions. The plasma region and the current sheath 
extended to  infinity in Y, Z directions. Right-hand 
half-plane is filled with plasma with magnetic field 
(0 ,  0, Bo) in Cartesian coordinates; the left half is 
fillcd with plasma with oppositely directed mag- 
netic field (0, 0, -&). 
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because the collision frequency is sufficiently 
high in the chromosphere as well as in the 
corona to preserve the pressure isotropy during 
the compression of the plasma. For coronal 
plasma of N - 108 particles/cm*, T - 106 O K ,  

the frequency of electron-electron collisions is 
of the order of 2.5 X lo" per second and the 
mean free path of an electron is of the order of 
1 km. Since the time involved in the flare process 
is of the order of minutes, and the length is of 
the order of thousands of kilometers, the pressure 
will be assumed isotropic throughout the dis- 
cussion. 

The basic equations in this section are the 
magnetohydrodynamic equations as used by 
Kruskal and Schwarzschild [1954] and as further 
employed by Jaggi [1962]. With the isotropic 
pressure the equations of motion are 

dv 1 
p ;  + g r a d p  = - j X B 

C 

- d i v  ( p v )  (2) a,= 
at 

1 d p = Y d p  p dt p dt  (4) 

d i v B  = 0 (5) 

curl B = (4x/c)j (6) 
where the displacement current has been neg- 
lected. As a possible equilibrium configuration 
for the plasma let us assume that there is no 
magnetic field in the plasma conhed between 
two parallel planes z = =txo. For z > zo there is 
vacuum and the magnetic field (0, 0, Bo) is 
constant and parallel to the surface. Taking 
the z axis parallel to this magnetic field, we have 
a current in the y direction at 2 = +zo. For 
z < zo the magnetic field is (0, 0, -Bo) .  The 
boundary conditions are 

n* [B] = 0 (7) 

(8) b 4- (B2/8x)]  = 0 
If we perturb the boundary of the plasma- 

vacuum interface as 

where the perturbations of the physical entities 
in the plasma are of the form (e.g., the perturba- 
tion in the pressure denoted by subscript 1) 

(10) 

Pl = f P l  (1 1) 

i k s w + i k * z - i o  t P, = p l ( d e  
Linearizing equation 4 gives 

where 5 = d y p o / p o  is the velocity of sound in 
the plasma, and po and pa are the equilibrium 
pressure and density of the plasma, respectively. 
We easily find that 

B1 = 0 

PI  satisfies the equation 

and has for its solution 

p1 = AeKz + Be-=" 

R = d k 1 2  + k , 2 ( ~ 2 / f ) .  with 

Also 

p l  = Q(AeK" + Be-") 

The solutions for perturbation in magnetic 
field in the vacuum z > zo and z < zo are, 
respectively, 

(17-18) I B1,  = DK,e-K'" 

Blw = Dikze-g'z 

B I Z  = Dik,e-K'z 

B1,  = DIK,eK'" 
and 

B,, = D l i ~ z e K ' j  

B 1 ,  = D,ik,e K x z  

where K l  = d k p l  + ka2 and D and D ,  are 
constants of integration; the factor e i k Z  v+ik3*--iwt 

has been omitted on both sides of equations 14 
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and 17-18 for convenience. Applying the boundary 
conditions (7) and (8) a t  x = +zo and z = -Za, 

we obtain the dispersion equations 

which show that w2 cannot be negati\e, and 
therefore the equilibrium is stable. 

The other equilibrium configuration considered 
by us is shown in Figure 3. For x > 0, we have 
a uniform plasma of density po, pressure po,  and 
the magnetic field (0, 0, Bo). For x < 0, we 
have a uniform plasma of density pl ,  prtssure p l ,  
and magnetic field (0, 0, -B1). At z = 0, we 
have a current (c/47r)(B1 - Bo) in the g direction. 
Following the analysis given above, we obtain 
the dispersion equation in the form 

kZ2 f kS2 f r 
L 

r- I k,2 + k,2 f 

w2 ) 1 ( k,-c"- w2 k S 2  v,' I------- 

1 - - - - - - -  L c k:: k, 'VI ' 

If w* < 0, the left-hand side is positive and 
the right-hand side negative. This shows that 
no solution is possible for w2 < 0; Le., no in- 

i.e., the symmetrical case, the dispersion equation 
is of the form 

staSilities exist. For Bo = B1, Po = p l ,  Po = p l ,  

= 0 (21) 

which gives a quadratic equation having two 
positive roots. Thus there are no instabilities of 
the current layer in equilibrium between two 
ionized clouds having oppositely directcd uniform 
magnetic fields. If we take the gradient of the 
magnetic field into account we predict that the 
current layer will still be stable because the 
magnetic field on both sides has increasing 
magnitude. 

3. h'fAGNETIC FIELD GRADIENT IKSTABILITIES 

We shall now show that there are no serious 
magnetic field gradient instabilities for long 
wavelengths to affect the assumption of the 
equilibrium configurations studied in the previous 
section. Krall and Rosenbluth [ 19G21 have con- 
sidtred a plasma in cqidibrium in a magnetic 
fipld of the form 

B = B,,(l f tx)i, (22) 

where i, is a unit vector in the z direction. This 
magnetic field configuration is quite suitable for 
our problem. The distribution function for the 
electrons and ions can be assumed to be 

exp [-P,(~.'>Is (23) 
where the subscript j refers to electrons ( j  = e) 
and ions ( j  = i) ; g satisfies the equation 

Choosing 

where €1 = eBo2/[47rnk(Ti + TJ], n being the 
number density of the particles, fie = eBo/mc, 
Qi = eBo/Mc, m = the mass of the electron and 
M that of an ion, Krall and Rosenbluth arrive 
at. nnstahle snlut,inns of the form e*: with the 
growth rate s given by 

b 

I 
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for k R, < 1 ,  @ / E > >  1, and 

(26) 

for k R. > 1,  € , / E > >  1, where Re and R. denote 
the Larmor radii of electrons and ions respec- 
tively. Here X = 2d,Qi2/ke should not be 
confused with the coordinate x. k is the wave 
number of purely longitudinal electrostatic oscil- 
lations of the form 

E = (Ek/l k I ) E ' ~ - ~ ' E , ( X T , / T , )  

/( X T ,  / T.) e X T , / T .  - 

for large values of X, and is a confluent 
hypergeometric function. For the rase of sunspot 
magnetic field gradients, 

1 dB 1 -l 

B dx E = - - % p c m  

Bo - lo3 gauss 

X 2 O.243(B%/Te) 

where X = 27r/k. For T = 5 X 1 0 8  OK, X'V 1 
cm, X 'V 1013, Le., an extremely large quantity. 
Equation 25 yields 

i.e., an extremely small number. 
Conversely, if k Re > 1, i.e., wavelengths less 

than the electron cyclotron radius, the growth 
rate is extremely large, of the order of inverse of 
the growth rate for k R. < 1. This shows that 
only extremely small wavelengths are unstable. 
The Debye length in the lower chromosphere is 
(kT/4mz)1/2  N 5 X 10-2 cm, and the electron 
cyclotron radius corresponding to 5 X 108 OK 

temperature is of the order of 10-3 cm. Any 
wavelengths less than the electron cyclotron 
radius will also be less than the Debye length, 
and the theory may not apply. (This is satisfied 
in the corona as well.) At any rate, the instability 
of extremely small n-avelength, although taking 
place instantaneously, will not be efficient to 
enhance the thermal and electrical diffusion of 
the plasma. 

The magnetic field gradient instabilities dis- 
cussed so far in this section are only important 
much before the equilibrium between the mag- 
netic pressure and the kinetic pressure i s  reached 
(if i t  i s  reached a t  all) because of the condition 
@ / E  >> 1 imposed on solutions 25 and 26. After 
the compression continues, the temperature of 
the plasma builds up; the pressure P begins to 
increase until it is comparable with the magnetic 
pressure B 2 / 8 ~ .  The kinetic pressure develops 
more rapidly than the magnetic field pressure 
[Severny, 1955, p. 3211, and an equilibrium 
configuration can be reached when P is com- 
parable with B 2 / 8 ~ .  

It might be thought that the pressure ani- 
sotropy instabilities can develop in this case, 
but i t  can be shown that owing to the slow rate 
of approach of the two sunspots and owing to 
the high collision frequency the pressure ani- 
sotropy cannot develop to the extent of pro- 
ducing an  instability. As has been mentioned 
earlier, the collision frequency in the lower 
corona is of the order of about 106 per second, 
and, since the compression time is of the order 
of hundreds of seconds, the collisions will keep 
the pressure quite isotropic in the present 
situation. It is only if the phenomena take place 
in about 10-4 second that the pressure anisotropy 
can be important. To calculate the magnetic 
field, the density, and the temperature after the 
compression we may use the adiabatic equations 
deduced by Chew, Goldbmgm, and L m  [1956]. 
With P ,  = PI, these equations are 

(28) 
PB2 ~3 = constant 

= constant (29) 
P 

N B  
- 

from which we obtain 

(30) 
B3 
2 = constant N 

If Lo, Bo, Po  denote the initial length, magnetic 
field density, and the pressure of the plasma, 
the quantities B1 N 1  PI for a given L1 can be 
calculated from N L 1  = NOLO, BI3/NlZ = Bo*/No*, 
PJNls/S = Po/No6/3. For Bo = 103 gauss, 
N o  = lO12/cm3, Lo = 1Ol0 cm, To = 5 X 10' OK, 

we obtain for L1 = lo7 cm, N1 = 1016/cma, 
BI = 105 gauss, TI = 5 X 106 O K .  The collision 
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frequency remains about the same as before the 
compression. 

4. RESISTIVE INSTABILLTIES 
The instabilities discussed so far apply in the 

case of infinite conductivity of the plasma under 
consideration. Recently some work has been 
done assuming finite conductivity of the plasma 
[Furth et al., 19631. We shall use the results to 
make an estimate of the growth rates of resistive 
instabilities. 

The infinitely thin current layer as sketched 
in Figure 3 will now be assumed to have finite 
thickness denoted by a. We will also assume a 
magnetic field in the current layer. With finite 
conductivity, equation 3 has to be replaced by 

aB 
- = curl (v X B) - curl [z  curl I31  (31) at 

where 9 is the isotropic resistivity of the plasma. 
The magnetic field in the current sheath has 
the form 

B = i,B,(x) (32) 
Further assuming the current layer to be incom- 
pressible (this amounts to using div v = 0 in 
place of equation 2 and deleting equation 4), 
two unstable modes are deduced by Furth, 
Killeen, and Rosenbluth for waves propagating 
in the z dircction. They are called the rippling 
mode and the tearing mode. The rippling mode 
arises in the case in which the resistivity varies 
with distance in the current layer; the growth 
rate of the instability which is the inverse of the 
e folding time of a perturbation is given by 

R, (s) = a2/5S2/5/47ra22a (33) 

where u (=l/q) is the conductivity of the 
plasma in emu 

TZ dizqz s = 

T in electron volts, a = ka, where k is the wave 
number of waves in the current layer (propa- 
gating in the current layer). Also this instability 
occurs for S-2/7 < a < S213. Using c = 2 X lo-" 
Ta/z emu, T = 106 OK, a = 105 cm (106 OK S 86 
ev), we have S = 7 X 108, and the e folding 
time which is the inverse of €2. (8) is of the 
order of lO3/k2Ia. Now, from S-"7 < a < S2la 

we get 2.8 < l/k < 106. For long wavelengths, 
the e folding time for the rippling mode is large. 
Only for small wavelengths, of the order of a 
few centimeters, the times are reasonable and 
the instability of rippling mode is important for 
the problem in hand. 

The tearing mode is unstable for a < 1 or 
wavelengths greater than the thickness of the 
current sheath. I n  this case the e folding time is 
of the order 106 k2'5, where k 7 1/2500. This 
time will be small for long wavelengths, and the 
order of magnitude is also suitable for the 
problem. 

The above results are derived on the assump- 
tion that the current layer is incompressible, 
and it is proved by Furth, Killeen, and Rosen- 
bluth that the results are not much different if 
compressibility is taken into account. 

To arrive a t  the above figures, we have used 
the temperature of 10" OK in the higher chromo- 
spheric region. Some people [De Jager, 1959, 
19611 are of the opinion that the temperature 
of the chromosphere region does not rise very 
much and that only the density becomes higher. 
A differing view, based on theoretical models, is 
adopted in section 3 of this article, following 
Severny [1958]. For this reason we have evalu- 
ated the growth rates of rippling and tearing 
modes in Table 1. The magnetic field a t  the 
neutral point, where the current sheath is 
formed, will be weak. This is another reason 
why the growth rate can drop off by several 
orders of magnitude. 

TABLE 1. Rippling and Tearing Mode Instability 
If t, denotes the e folding time for the rippling mode, this table evaluates t , (k)2/6 = 2.96 X 10-2 Tg110/Be2'6. 

The e folding time for the tearing mode is obtained from tt =t, 104(k)4/5. 

B = 10 B = 102 B = 103 B = 104 B = 105 B = 1 0 6  

T ,  "I< gauss gauss gauss gauss gauss gauss 

104 4 4 . 4  18.6 7 .42  2 .96  1.17 0.469 
1 0 5  3 . 7  x i o 2  1 .48 x io2 59 23 .5  9 .35  3.72 
lo6 2 .96  X lo3 1.17 X lo5 4 .69  X lo2 1 .78  X lo2 74.03 29 .6  
lo7 3 . i 2  X lo3 1.47 X lo3 5 . 9  X lo2 2 .24  X lo2 93.02 36.58 

t 

Y 



t 

I *  

ROLE OF PLASMA INSTABILITIES I N  ORIGIN OF SOLAR FLARE 4435 
For the rippling mode the e folding time is 

obtained by multiplying each member of the table 

by  (k-92/5.* We find that G.7 > (k-1)315 > 1 

for the whole range of the table. Tlie upper 
numbers for B = 10, T = 104; the lower, 
for B = los, T = 107. An intermediate value of 
1 shows that suitable time scales are obtained 
for almost all the values of B and T in the table. 

drodynamics, Proc. Roy. SOC. London, A, $36, 
112, 1956. 

De Jager, C., Structure and dynamics of the solar 
atmosphere, Nandbmh der Phys., 5Z, 80, 

De Jager, C., The development of a solar center 
of activity, vistas in Astronomy, edited by A. 
Beer, vol. 4, pp. 143-183, Pergamon Press, 1961. 

Dungey, J. w,, Kyoto Conf. Cosmic Rays and 
~ ~ r t h  S t m s  (zAU),  Kyoto, Japan, 1961. 

Furth, H., J. Killeen, and M. N. Rosenbluth, 

30.7 Springer, Gottingen, 1959. 

2, or t ,  as N - 1 ’ 5 .  

For the tearing mode the e folding time is 
obtained by multiplying each member of the 
table by l(T(k)2/5, where, for the whole range of 

the table, lo-* > (k)215 > o.0208 0.002.7. The upper 

number applies for B = 10, T = 104; the lower, 
for B = 106, T = 107. Assuming k2’5 to be of 
the order of 10-3, n e  see that the e folding times, 
for large magnetic fields and small temperatures, 
are reasonable. We therefore conclude that the 
resistive instabilities give reasonable times for 
the problem in hand. 
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